Spaces#
- class gym.spaces.Space(shape: Optional[Sequence[int]] = None, dtype: Optional[Union[Type, str, dtype]] = None, seed: Optional[Union[int, RandomNumberGenerator]] = None)#
-
Superclass that is used to define observation and action spaces.
Spaces are crucially used in Gym to define the format of valid actions and observations. They serve various purposes:
-
They clearly define how to interact with environments, i.e. they specify what actions need to look like and what observations will look like
-
They allow us to work with highly structured data (e.g. in the form of elements of
Dict
spaces) and painlessly transform them into flat arrays that can be used in learning code -
They provide a method to sample random elements. This is especially useful for exploration and debugging.
Different spaces can be combined hierarchically via container spaces (
Tuple
andDict
) to build a more expressive spaceWarning
Custom observation & action spaces can inherit from the
Space
class. However, most use-cases should be covered by the existing space classes (e.g.Box
,Discrete
, etc…), and container classes (:class`Tuple` &Dict
). Note that parametrized probability distributions (through theSpace.sample()
method), and batching functions (ingym.vector.VectorEnv
), are only well-defined for instances of spaces provided in gym by default. Moreover, some implementations of Reinforcement Learning algorithms might not handle custom spaces properly. Use custom spaces with care. -
General Functions#
Each space implements the following functions:
- gym.spaces.Space.sample(self) T_cov #
-
Randomly sample an element of this space. Can be uniform or non-uniform sampling based on boundedness of space.
- gym.spaces.Space.contains(self, x) bool #
-
Return boolean specifying if x is a valid member of this space.
- property Space.shape: Optional[Tuple[int, ...]]#
-
Return the shape of the space as an immutable property.
- property gym.spaces.Space.dtype#
-
Return the data type of this space.
- gym.spaces.Space.seed(self, seed: Optional[int] = None) list #
-
Seed the PRNG of this space and possibly the PRNGs of subspaces.
- gym.spaces.Space.to_jsonable(self, sample_n: Sequence[T_cov]) list #
-
Convert a batch of samples from this space to a JSONable data type.
- gym.spaces.Space.from_jsonable(self, sample_n: list) List[T_cov] #
-
Convert a JSONable data type to a batch of samples from this space.
Box#
- class gym.spaces.Box(low: ~typing.Union[~typing.SupportsFloat, ~numpy.ndarray], high: ~typing.Union[~typing.SupportsFloat, ~numpy.ndarray], shape: ~typing.Optional[~typing.Sequence[int]] = None, dtype: ~typing.Type = <class 'numpy.float32'>, seed: ~typing.Optional[~typing.Union[int, ~gym.utils.seeding.RandomNumberGenerator]] = None)#
-
A (possibly unbounded) box in \(\mathbb{R}^n\).
Specifically, a Box represents the Cartesian product of n closed intervals. Each interval has the form of one of \([a, b]\), \((-\infty, b]\), \([a, \infty)\), or \((-\infty, \infty)\).
There are two common use cases:
-
Identical bound for each dimension:
>>> Box(low=-1.0, high=2.0, shape=(3, 4), dtype=np.float32) Box(3, 4)
-
Independent bound for each dimension:
>>> Box(low=np.array([-1.0, -2.0]), high=np.array([2.0, 4.0]), dtype=np.float32) Box(2,)
- __init__(low: ~typing.Union[~typing.SupportsFloat, ~numpy.ndarray], high: ~typing.Union[~typing.SupportsFloat, ~numpy.ndarray], shape: ~typing.Optional[~typing.Sequence[int]] = None, dtype: ~typing.Type = <class 'numpy.float32'>, seed: ~typing.Optional[~typing.Union[int, ~gym.utils.seeding.RandomNumberGenerator]] = None)#
-
Constructor of
Box
.The argument
low
specifies the lower bound of each dimension andhigh
specifies the upper bounds. I.e., the space that is constructed will be the product of the intervals \([\text{low}[i], \text{high}[i]]\).If
low
(orhigh
) is a scalar, the lower bound (or upper bound, respectively) will be assumed to be this value across all dimensions.- Parameters:
-
-
low (Union[SupportsFloat, np.ndarray]) – Lower bounds of the intervals.
-
high (Union[SupportsFloat, np.ndarray]) – Upper bounds of the intervals.
-
shape (Optional[Sequence[int]]) – This only needs to be specified if both
low
andhigh
are scalars and determines the shape of the space. Otherwise, the shape is inferred from the shape oflow
orhigh
. -
dtype – The dtype of the elements of the space. If this is an integer type, the
Box
is essentially a discrete space. -
seed – Optionally, you can use this argument to seed the RNG that is used to sample from the space.
-
- Raises:
-
ValueError – If no shape information is provided (shape is None, low is None and high is None) then a value error is raised.
- is_bounded(manner: str = 'both') bool #
-
Checks whether the box is bounded in some sense.
- Parameters:
-
manner (str) – One of
"both"
,"below"
,"above"
. - Returns:
-
If the space is bounded
- Raises:
-
ValueError – If manner is neither
"both"
nor"below"
or"above"
- sample() ndarray #
-
Generates a single random sample inside the Box.
In creating a sample of the box, each coordinate is sampled (independently) from a distribution that is chosen according to the form of the interval:
-
\([a, b]\) : uniform distribution
-
\([a, \infty)\) : shifted exponential distribution
-
\((-\infty, b]\) : shifted negative exponential distribution
-
\((-\infty, \infty)\) : normal distribution
- Returns:
-
A sampled value from the Box
-
-
Discrete#
- class gym.spaces.Discrete(n: int, seed: Optional[Union[int, RandomNumberGenerator]] = None, start: int = 0)#
-
A space consisting of finitely many elements.
This class represents a finite subset of integers, more specifically a set of the form \(\{ a, a+1, \dots, a+n-1 \}\).
Example:
>>> Discrete(2) # {0, 1} >>> Discrete(3, start=-1) # {-1, 0, 1}
- class __init__(*args, **kwargs)#
-
Initialize self. See help(type(self)) for accurate signature.
MultiBinary#
- class gym.spaces.MultiBinary(n: Union[ndarray, Sequence[int], int], seed: Optional[Union[int, RandomNumberGenerator]] = None)#
-
An n-shape binary space.
Elements of this space are binary arrays of a shape that is fixed during construction.
Example Usage:
>>> observation_space = MultiBinary(5) >>> observation_space.sample() array([0, 1, 0, 1, 0], dtype=int8) >>> observation_space = MultiBinary([3, 2]) >>> observation_space.sample() array([[0, 0], [0, 1], [1, 1]], dtype=int8)
MultiDiscrete#
- class gym.spaces.MultiDiscrete(nvec: ~typing.Union[~numpy.ndarray, ~typing.List[int]], dtype=<class 'numpy.int64'>, seed: ~typing.Optional[~typing.Union[int, ~gym.utils.seeding.RandomNumberGenerator]] = None)#
-
This represents the cartesian product of arbitrary
Discrete
spaces.It is useful to represent game controllers or keyboards where each key can be represented as a discrete action space.
Note
Some environment wrappers assume a value of 0 always represents the NOOP action.
e.g. Nintendo Game Controller - Can be conceptualized as 3 discrete action spaces:
-
Arrow Keys: Discrete 5 - NOOP[0], UP[1], RIGHT[2], DOWN[3], LEFT[4] - params: min: 0, max: 4
-
Button A: Discrete 2 - NOOP[0], Pressed[1] - params: min: 0, max: 1
-
Button B: Discrete 2 - NOOP[0], Pressed[1] - params: min: 0, max: 1
It can be initialized as
MultiDiscrete([ 5, 2, 2 ])
- __init__(nvec: ~typing.Union[~numpy.ndarray, ~typing.List[int]], dtype=<class 'numpy.int64'>, seed: ~typing.Optional[~typing.Union[int, ~gym.utils.seeding.RandomNumberGenerator]] = None)#
-
Constructor of
MultiDiscrete
space.The argument
nvec
will determine the number of values each categorical variable can take.Although this feature is rarely used,
MultiDiscrete
spaces may also have several axes ifnvec
has several axes:Example:
>> d = MultiDiscrete(np.array([[1, 2], [3, 4]])) >> d.sample() array([[0, 0], [2, 3]])
- Parameters:
-
-
nvec – vector of counts of each categorical variable. This will usually be a list of integers. However, you may also pass a more complicated numpy array if you’d like the space to have several axes.
-
dtype – This should be some kind of integer type.
-
seed – Optionally, you can use this argument to seed the RNG that is used to sample from the space.
-
-
Dict#
- class gym.spaces.Dict(spaces: Optional[Dict[str, Space]] = None, seed: Optional[Union[dict, int, RandomNumberGenerator]] = None, **spaces_kwargs: Space)#
-
A dictionary of
Space
instances.Elements of this space are (ordered) dictionaries of elements from the constituent spaces.
Example usage:
>>> from gym.spaces import Dict, Discrete >>> observation_space = Dict({"position": Discrete(2), "velocity": Discrete(3)}) >>> observation_space.sample() OrderedDict([('position', 1), ('velocity', 2)])
Example usage [nested]:
>>> from gym.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete >>> Dict( ... { ... "ext_controller": MultiDiscrete([5, 2, 2]), ... "inner_state": Dict( ... { ... "charge": Discrete(100), ... "system_checks": MultiBinary(10), ... "job_status": Dict( ... { ... "task": Discrete(5), ... "progress": Box(low=0, high=100, shape=()), ... } ... ), ... } ... ), ... } ... )
It can be convenient to use
Dict
spaces if you want to make complex observations or actions more human-readable. Usually, it will be not be possible to use elements of this space directly in learning code. However, you can easily convert Dict observations to flat arrays by using agym.wrappers.FlattenObservation
wrapper. Similar wrappers can be implemented to deal withDict
actions.- __init__(spaces: Optional[Dict[str, Space]] = None, seed: Optional[Union[dict, int, RandomNumberGenerator]] = None, **spaces_kwargs: Space)#
-
Constructor of
Dict
space.This space can be instantiated in one of two ways: Either you pass a dictionary of spaces to
__init__()
via thespaces
argument, or you pass the spaces as separate keyword arguments (where you will need to avoid the keysspaces
andseed
)Example:
>>> from gym.spaces import Box, Discrete >>> Dict({"position": Box(-1, 1, shape=(2,)), "color": Discrete(3)}) Dict(color:Discrete(3), position:Box(-1.0, 1.0, (2,), float32)) >>> Dict(position=Box(-1, 1, shape=(2,)), color=Discrete(3)) Dict(color:Discrete(3), position:Box(-1.0, 1.0, (2,), float32))
- Parameters:
-
-
spaces – A dictionary of spaces. This specifies the structure of the
Dict
space -
seed – Optionally, you can use this argument to seed the RNGs of the spaces that make up the
Dict
space. -
**spaces_kwargs – If
spaces
isNone
, you need to pass the constituent spaces as keyword arguments, as described above.
-
Tuple#
- class gym.spaces.Tuple(spaces: Iterable[Space], seed: Optional[Union[int, List[int], RandomNumberGenerator]] = None)#
-
A tuple (more precisely: the cartesian product) of
Space
instances.Elements of this space are tuples of elements of the constituent spaces.
Example usage:
>>> from gym.spaces import Box, Discrete >>> observation_space = Tuple((Discrete(2), Box(-1, 1, shape=(2,)))) >>> observation_space.sample() (0, array([0.03633198, 0.42370757], dtype=float32))
- __init__(spaces: Iterable[Space], seed: Optional[Union[int, List[int], RandomNumberGenerator]] = None)#
-
Constructor of
Tuple
space.The generated instance will represent the cartesian product \(\text{spaces}[0] \times ... \times \text{spaces}[-1]\).
- Parameters:
-
-
spaces (Iterable[Space]) – The spaces that are involved in the cartesian product.
-
seed – Optionally, you can use this argument to seed the RNGs of the
spaces
to ensure reproducible sampling.
-
Utility Functions#
- gym.spaces.utils.flatdim(space: Space) int #
- gym.spaces.utils.flatdim(space: Union[Box, MultiBinary]) int
- gym.spaces.utils.flatdim(space: Union[Box, MultiBinary]) int
- gym.spaces.utils.flatdim(space: Discrete) int
- gym.spaces.utils.flatdim(space: MultiDiscrete) int
- gym.spaces.utils.flatdim(space: Tuple) int
- gym.spaces.utils.flatdim(space: Dict) int
-
Return the number of dimensions a flattened equivalent of this space would have.
Example usage:
>>> from gym.spaces import Discrete >>> space = Dict({"position": Discrete(2), "velocity": Discrete(3)}) >>> flatdim(space) 5
- Parameters:
-
space – The space to return the number of dimensions of the flattened spaces
- Returns:
-
The number of dimensions for the flattened spaces
- Raises:
-
NotImplementedError – if the space is not defined in
gym.spaces
.
- gym.spaces.utils.flatten_space(space: Space) Box #
- gym.spaces.utils.flatten_space(space: Box) Box
- gym.spaces.utils.flatten_space(space: Union[Discrete, MultiBinary, MultiDiscrete]) Box
- gym.spaces.utils.flatten_space(space: Union[Discrete, MultiBinary, MultiDiscrete]) Box
- gym.spaces.utils.flatten_space(space: Union[Discrete, MultiBinary, MultiDiscrete]) Box
- gym.spaces.utils.flatten_space(space: Tuple) Box
- gym.spaces.utils.flatten_space(space: Dict) Box
- gym.spaces.utils.flatten_space(space: Graph) Graph
-
Flatten a space into a single
Box
.This is equivalent to
flatten()
, but operates on the space itself. The result for non-graph spaces is always a Box with flat boundaries. While the result for graph spaces is always a Graph with node_space being a Box with flat boundaries and edge_space being a Box with flat boundaries or None. The box has exactlyflatdim()
dimensions. Flattening a sample of the original space has the same effect as taking a sample of the flattenend space.Example:
>>> box = Box(0.0, 1.0, shape=(3, 4, 5)) >>> box Box(3, 4, 5) >>> flatten_space(box) Box(60,) >>> flatten(box, box.sample()) in flatten_space(box) True
Example that flattens a discrete space:
>>> discrete = Discrete(5) >>> flatten_space(discrete) Box(5,) >>> flatten(box, box.sample()) in flatten_space(box) True
Example that recursively flattens a dict:
>>> space = Dict({"position": Discrete(2), "velocity": Box(0, 1, shape=(2, 2))}) >>> flatten_space(space) Box(6,) >>> flatten(space, space.sample()) in flatten_space(space) True
Example that flattens a graph:
>>> space = Graph(node_space=Box(low=-100, high=100, shape=(3, 4)), edge_space=Discrete(5)) >>> flatten_space(space) Graph(Box(-100.0, 100.0, (12,), float32), Box(0, 1, (5,), int64)) >>> flatten(space, space.sample()) in flatten_space(space) True
- Parameters:
-
space – The space to flatten
- Returns:
-
A flattened Box
- Raises:
-
NotImplementedError – if the space is not defined in
gym.spaces
.
- gym.spaces.utils.flatten(space: Space[T], x: T) ndarray #
- gym.spaces.utils.flatten(space: MultiBinary, x) ndarray
- gym.spaces.utils.flatten(space: Box, x) ndarray
- gym.spaces.utils.flatten(space: Discrete, x) ndarray
- gym.spaces.utils.flatten(space: MultiDiscrete, x) ndarray
- gym.spaces.utils.flatten(space: Tuple, x) ndarray
- gym.spaces.utils.flatten(space: Dict, x) ndarray
- gym.spaces.utils.flatten(space: Graph, x) ndarray
-
Flatten a data point from a space.
This is useful when e.g. points from spaces must be passed to a neural network, which only understands flat arrays of floats.
- Parameters:
-
-
space – The space that
x
is flattened by -
x – The value to flatten
-
- Returns:
-
-
- The flattened ``x``, always returns a 1D array for non-graph spaces.
-
- For graph spaces, returns `GraphInstance` where –
-
nodes are n x k arrays
-
- edges are either:
-
-
m x k arrays
-
None
-
-
- edge_links are either:
-
-
m x 2 arrays
-
None
-
-
-
- Raises:
-
NotImplementedError – If the space is not defined in
gym.spaces
.
- gym.spaces.utils.unflatten(space: Space[T], x: ndarray) T #
- gym.spaces.utils.unflatten(space: Union[Box, MultiBinary], x: ndarray) ndarray
- gym.spaces.utils.unflatten(space: Union[Box, MultiBinary], x: ndarray) ndarray
- gym.spaces.utils.unflatten(space: Discrete, x: ndarray) int
- gym.spaces.utils.unflatten(space: MultiDiscrete, x: ndarray) ndarray
- gym.spaces.utils.unflatten(space: Tuple, x: ndarray) tuple
- gym.spaces.utils.unflatten(space: Dict, x: ndarray) dict
- gym.spaces.utils.unflatten(space: Graph, x: GraphInstance) GraphInstance
-
Unflatten a data point from a space.
This reverses the transformation applied by
flatten()
. You must ensure that thespace
argument is the same as for theflatten()
call.- Parameters:
-
-
space – The space used to unflatten
x
-
x – The array to unflatten
-
- Returns:
-
A point with a structure that matches the space.
- Raises:
-
NotImplementedError – if the space is not defined in
gym.spaces
.